Broadband Multichannel Optical Vortex Generators via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer
The capacity of an optical communication system can be greatly increased by using separate orbital angular momentum (OAM) modes as independent channels for signal transmission and encryption. At present, a transmissive OAM mode generator compatible with wavelength division multiplexing is being high...
Saved in:
Published in: | Crystals (Basel) Vol. 10; no. 10; p. 882 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-10-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The capacity of an optical communication system can be greatly increased by using separate orbital angular momentum (OAM) modes as independent channels for signal transmission and encryption. At present, a transmissive OAM mode generator compatible with wavelength division multiplexing is being highly pursued. Here, we introduce a specific double-layer reverse-twist configuration into liquid crystal polymer (LCP) to overcome wavelength dependency. With this design, broadband-applicable OAM array generators are proposed and demonstrated. A Damman vortex grating and a Damman q-plate were encoded via photopatterning two subsequent LCP layers adopted with oppositely handed chiral dopants. Rectangular and hexagonal OAM arrays with mode conversion efficiencies exceeding 40.1% and 51.0% in the ranges of 530 to 930 nm, respectively, are presented. This provides a simple and broadband efficient strategy for beam shaping. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst10100882 |