Edwardsiella ictaluri Almost Completely Occupies the Gut Microbiota of Fish Suffering from Enteric Septicemia of Catfish (Esc)

To reveal the changes in the gut microbiota of yellow catfish after being infected by Edwardsiella ictaluri, 16S rRNA gene high-throughput sequencing technology was used to analyze the microbial composition and diversity of the healthy and diseased yellow catfish. The gut microbial richness and dive...

Full description

Saved in:
Bibliographic Details
Published in:Fishes Vol. 8; no. 1; p. 30
Main Authors: Yang, Jicheng, Lin, Yaoyao, Wei, Zhaohui, Wu, Zhenbing, Zhang, Qianqian, Hao, Jingwen, Wang, Shuyi, Li, Aihua
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To reveal the changes in the gut microbiota of yellow catfish after being infected by Edwardsiella ictaluri, 16S rRNA gene high-throughput sequencing technology was used to analyze the microbial composition and diversity of the healthy and diseased yellow catfish. The gut microbial richness and diversity of the diseased fish were significantly lower than those of healthy fish. The composition and predicted function of yellow catfish gut microbiota were drastically altered after infection by E. ictaluri. Fusobacteriota, Proteobacteria, and Firmicutes were the predominant bacterial phyla in the gut of the healthy fish, while Proteobacteria was the dominant phylum in the gut of the diseased fish. At the genus level, the gut of healthy fish was dominated by Cetobacterium, Plesiomonas, and Romboutsia, while the gut of diseased fish was overwhelmed by the pathogenic E. ictaluri (99.22 ± 0.85%), and Cetobacterium, Plesiomonas, and Romboutsia disappeared. This is the most characteristic feature of the intestinal microbiota composition of yellow catfish edwardsiellosis. The same sequence of E. ictaluri was detected in the intestine of the healthy fish and the liver and intestine of the diseased fish. The anaerobic and Gram-positive bacteria were significantly decreased, and the digestive system, immune system, and metabolic functions of the gut microbiota were significantly reduced in the diseased fish gut. This may be part of the pathogenesis of fish edwardsiellosis.
ISSN:2410-3888
2410-3888
DOI:10.3390/fishes8010030