Functional expression of the taste specific G-protein, alpha-gustducin

The taste-specific G-protein alpha-subunit, alpha-gustducin, was expressed using a baculovirus based system. alpha-Gustducin was demonstrated to be myristoylated and was also palmitoylated in insect larval cells. Recombinant alpha-gustducin was purified to homogeneity. Neither receptors nor effector...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal Vol. 309 ( Pt 2); no. 2; pp. 629 - 636
Main Authors: Hoon, M A, Northup, J K, Margolskee, R F, Ryba, N J
Format: Journal Article
Language:English
Published: England 15-07-1995
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The taste-specific G-protein alpha-subunit, alpha-gustducin, was expressed using a baculovirus based system. alpha-Gustducin was demonstrated to be myristoylated and was also palmitoylated in insect larval cells. Recombinant alpha-gustducin was purified to homogeneity. Neither receptors nor effectors that interact with gustducin in taste are known. However, alpha-gustducin has a close structural similarity to the visual G-protein, alpha-transducin. Therefore alpha-gustducin was reconstituted with components of the visual system to determine the degree of its functional similarity with alpha-transducin. Despite the fact that the sequences of alpha-gustducin and alpha-transducin share only 80% identity with each other, the interactions and functions of these two proteins were quantitatively identical. These included the interaction with receptor, bovine rhodopsin, with effector, bovine retinal cyclic GMP-phosphodiesterase, and with bovine brain and retinal G-protein beta gamma-heterodimers; receptor-catalysed GDP-GTP exchange and the intrinsic GTPase activity of alpha-gustducin and alpha-transducin were also identical. Gi alpha which is 70% identical with alpha-transducin interacts with different receptor and effector proteins and has very different guanine-nucleotide binding properties. Therefore, the functional equivalence of alpha-gustducin and alpha-transducin suggest that taste buds are likely to contain receptor and effector proteins that share many properties with their retinal equivalents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3090629