Glass-clad single-crystal germanium optical fiber
Long lengths (250 meters) of a flexible 150 microm diameter glass-clad optical fiber containing a 15 microm diameter crystalline and phase-pure germanium core was fabricated using conventional optical fiber draw techniques. X-ray diffraction and spontaneous Raman scattering measurements showed the c...
Saved in:
Published in: | Optics express Vol. 17; no. 10; pp. 8029 - 8035 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
11-05-2009
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Long lengths (250 meters) of a flexible 150 microm diameter glass-clad optical fiber containing a 15 microm diameter crystalline and phase-pure germanium core was fabricated using conventional optical fiber draw techniques. X-ray diffraction and spontaneous Raman scattering measurements showed the core to be very highly crystalline germanium with no observed secondary phases. Elemental analysis confirmed a very well-defined core-clad interface with a step-profile in composition and nominally 4 weight-percent oxygen having diffused into the germanium core from the glass cladding. For this proof-of-concept fiber, polycrystalline n-type germanium of unknown dopant concentration was used. The measured infrared transparency of the starting material was poor and, as a likely outcome, the attenuation of the resultant fiber was too high to be measured. However, the larger Raman cross-section, infrared and terahertz transparency of germanium over silicon should make these fibers of significant value for fiber-based mid- to long-wave infrared and terahertz waveguides and Raman-shifted infrared light sources once high-purity, high-resistivity germanium is employed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.17.008029 |