Relationship between metabolism of androstenone and skatole in intact male pigs

The relationship between the metabolism of androsterone and skatole, the major compounds responsible for boar taint, was investigated in F4 Swedish Yorkshire x European Wild Pig intact males. The metabolism of androstenone and skatole were studied in liver microsomes, and the testicular steroid prod...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal science Vol. 77; no. 1; pp. 84 - 92
Main Authors: Babol, J, Squires, E. J, Lundstrom, K
Format: Journal Article Conference Proceeding
Language:English
Published: Savoy, IL Am Soc Animal Sci 01-01-1999
American Society of Animal Science
Oxford University Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The relationship between the metabolism of androsterone and skatole, the major compounds responsible for boar taint, was investigated in F4 Swedish Yorkshire x European Wild Pig intact males. The metabolism of androstenone and skatole were studied in liver microsomes, and the testicular steroid production was measured in testes microsomes. Including androstenone in the assays of skatole metabolism reduced the formation of 6-hydroxyskatole (pro-MII), and three other skatole metabolites (P<.05). The formation of three additional metabolites was not affected. Liver microsomal incubations of androstenone produced two metabolites, I and II. The rate of the formation of metabolite I and the rate of androstenone metabolism were correlated with the rate of skatole metabolism. Liver metabolism of androstenone was not related to levels of androstenone in fat. Testicular synthesis of 16-androstene steroids was correlated with combined synthesis of estrogens and androgens, plasma levels of androstenone, levels of skatole in fat, and skatole metabolism in the liver (P<.05). Plasma levels of estrone sulfate were correlated with levels of skatole in fat and with androstenone levels in fat and plasma and were negatively correlated with synthesis of skatole metabolite F-1 and pro-MII sulfation. These results indicate that the liver metabolism of androstenone and skatole are related. However, it is likely that the relationship between levels of androstenone and skatole in fat is due more to a link between the testicular synthesis of androstenone rather than to the metabolism of androstenone and skatole in the liver. Sex steroids may affect this relationship because of their biosynthesis along with androstenone and possible inhibition of skatole metabolism in the liver.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8812
1525-3163
0021-8812
DOI:10.2527/1999.77184x