Misorientation texture development during grain growth. Part II: Theory
A critical event model for the evolution of number- and area-weighted misorientation distribution functions (MDFs) during grain growth is proposed. Predictions from the model are compared to number- and area-weighted MDFs measured in Monte Carlo simulations with anisotropic interfacial properties an...
Saved in:
Published in: | Acta materialia Vol. 58; no. 1; pp. 14 - 19 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
2010
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A critical event model for the evolution of number- and area-weighted misorientation distribution functions (MDFs) during grain growth is proposed. Predictions from the model are compared to number- and area-weighted MDFs measured in Monte Carlo simulations with anisotropic interfacial properties and several initial orientation distributions, as well as a dense polycrystalline magnesia sample. The steady-state equation of our model appears to be a good fit to all data. The relation between the grain boundary energy and the normalized average boundary area is discussed in the context of triple junction dynamics. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2009.08.032 |