Simulated Ageing of Crude Oil and Advanced Oxidation Processes for Water Remediation since Crude Oil Pollution

Crude oil can undergo biotic and abiotic transformation processes in the environment. This article deals with the fate of an Italian crude oil under simulated solar irradiation to understand (i) the modification induced on its composition by artificial ageing and (ii) the transformations arising fro...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts Vol. 11; no. 8; p. 954
Main Authors: Filomena Lelario, Giuliana Bianco, Sabino Aurelio Bufo, Laura Scrano
Format: Journal Article
Language:English
Published: MDPI AG 01-08-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Crude oil can undergo biotic and abiotic transformation processes in the environment. This article deals with the fate of an Italian crude oil under simulated solar irradiation to understand (i) the modification induced on its composition by artificial ageing and (ii) the transformations arising from different advanced oxidation processes (AOPs) applied as oil-polluted water remediation methods. The AOPs adopted were photocatalysis, sonolysis and, simultaneously, photocatalysis and sonolysis (sonophotocatalysis). Crude oil and its water-soluble fractions underwent analysis using GC-MS, liquid-state 1H-NMR, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and fluorescence. The crude oil after light irradiation showed (i) significant modifications induced by the artificial ageing on its composition and (ii) the formation of potentially toxic substances. The treatment produced oil oxidation with a particular effect of double bonds oxygenation. Non-polar compounds present in the water-soluble oil fraction showed a strong presence of branched alkanes and a good amount of linear and aromatic alkanes. All remediation methods utilised generated an increase of C5 class and a decrease of C6–C9 types of compounds. The analysis of polar molecules elucidated that oxygenated compounds underwent a slight reduction after photocatalysis and a sharp decline after sonophotocatalytic degradation. Significant modifications did not occur by sonolysis.
ISSN:2073-4344
DOI:10.3390/catal11080954