GASPAD: A General and Efficient mm-Wave Integrated Circuit Synthesis Method Based on Surrogate Model Assisted Evolutionary Algorithm

The design and optimization (both sizing and layout) of mm-wave integrated circuits (ICs) have attracted much attention due to the growing demand in industry. However, available manual design and synthesis methods suffer from a high dependence on design experience, being inefficient or not general e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems Vol. 33; no. 2; pp. 169 - 182
Main Authors: Bo Liu, Dixian Zhao, Reynaert, Patrick, Gielen, Georges G. E.
Format: Journal Article
Language:English
Published: New York IEEE 01-02-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The design and optimization (both sizing and layout) of mm-wave integrated circuits (ICs) have attracted much attention due to the growing demand in industry. However, available manual design and synthesis methods suffer from a high dependence on design experience, being inefficient or not general enough. To address this problem, a new method, called general mm-wave IC synthesis based on Gaussian process model assisted differential evolution (GASPAD), is proposed in this paper. A medium-scale computationally expensive constrained optimization problem must be solved for the targeted mm-wave IC design problem. Besides the basic techniques of using a global optimization algorithm to obtain highly optimized design solutions and using surrogate models to obtain a high efficiency, a surrogate model-aware search mechanism (SMAS) for tackling the several tens of design variables (medium scale) and a method to appropriately integrate constraint handling techniques into SMAS for tackling the multiple (high-) performance specifications are proposed. Experiments on two 60 GHz power amplifiers in a 65 nm CMOS technology and two mathematical benchmark problems are carried out. Comparisons with the state-of-art provide evidence of the important advantages of GASPAD in terms of solution quality and efficiency.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2013.2284109