Average Consensus on Arbitrary Strongly Connected Digraphs With Time-Varying Topologies

We have recently proposed a "surplus-based" algorithm which solves the multi-agent average consensus problem on general strongly connected and static digraphs. The essence of that algorithm is to employ an additional variable to keep track of the state changes of each agent, thereby achiev...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 59; no. 4; pp. 1066 - 1071
Main Authors: Kai Cai, Ishii, Hideaki
Format: Journal Article
Language:English
Published: New York IEEE 01-04-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have recently proposed a "surplus-based" algorithm which solves the multi-agent average consensus problem on general strongly connected and static digraphs. The essence of that algorithm is to employ an additional variable to keep track of the state changes of each agent, thereby achieving averaging even though the state sum is not preserved. In this note, we extend this approach to the more interesting and challenging case of time-varying topologies: An extended surplus-based averaging algorithm is designed, under which a necessary and sufficient graphical condition is derived that guarantees state averaging. The derived condition requires only that the digraphs be arbitrary strongly connected in a joint sense, and does not impose "balanced" or "symmetric" properties on the network topology, which is therefore more general than those previously reported in the literature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2014.2305952