Role of hepatic carbonic anhydrase in de novo lipogenesis
The role of carbonic anhydrase in de novo lipid synthesis was examined by measuring [1-14C]acetate incorporation into total lipids, fatty acids and non-saponifiable lipids in freshly isolated rat hepatocytes. Two carbonic anhydrase inhibitors, trifluoromethylsulphonamide (TFMS) and ethoxozolamide (E...
Saved in:
Published in: | Biochemical journal Vol. 310 ( Pt 1); no. 1; pp. 197 - 202 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
15-08-1995
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The role of carbonic anhydrase in de novo lipid synthesis was examined by measuring [1-14C]acetate incorporation into total lipids, fatty acids and non-saponifiable lipids in freshly isolated rat hepatocytes. Two carbonic anhydrase inhibitors, trifluoromethylsulphonamide (TFMS) and ethoxozolamide (ETZ) decreased incorporation of 14C into total lipids. Both fatty acid and non-saponifiable lipid components of the total lipid were inhibited to approximately the same extent by 100 microM TFMS (29 +/- 0.3% and 35 +/- 0.3% of control respectively in replicate studies). However, neither drug significantly affected ATP concentrations or the transport activity of Na+/K(+)-ATPase, two measures of cell viability. To establish the site of this inhibition, water-soluble 14C-labelled metabolites from perchloric acid extracts of the radiolabelled cells were separated by ion-exchange chromatography. TFMS inhibited 14C incorporation into citrate, malate, alpha-oxoglutarate and fumarate, but had no effect on incorporation of 14C into acetoacetate. Since ATP citrate-lyase, the cytosolic enzyme that catalyses the conversion of citrate into acetyl-CoA, catalyses an early rate-limiting step in fatty acid synthesis, levels of cytosolic citrate may be rate controlling for de novo fatty acid and sterol synthesis. Indeed citrate concentrations were significantly reduced to 37 +/- 6% of control in hepatocytes incubated with 100 microM TFMS for 30 min. TFMS also inhibited the incorporation of 14C from [1-14C]pyruvate into malate, citrate and glutamate, but not into lactate. This supports the hypothesis that TFMS inhibits pyruvate carboxylation, i.e. since all of the 14C from [1-14C]pyruvate converted into citric acid cycle intermediates must come via pyruvate carboxylase (i.e. rather than pyruvate dehydrogenase). Our findings indicate a role for carbonic anhydrase in hepatic de novo lipogenesis at the level of pyruvate carboxylation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj3100197 |