Smart photochromic materials based on polylactic acid

The smart photochromic materials based on polylactic acid (PLA) were prepared by melt-blending and hot-pressing, in which photochromic microcapsules (PM) were used as a functional additive, and poly(vinyl acetate) (PVAc) was introduced into the photochromic PLA blends for the first time to improve t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules Vol. 241; p. 124465
Main Authors: Zhou, Xingxing, Yu, Dongzheng, Mao, Wenwen, Wang, Lanlan, Guo, Haiyang, Li, Dawei, Li, Haoxuan, Deng, Bingyao, Liu, Qingsheng
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 30-06-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The smart photochromic materials based on polylactic acid (PLA) were prepared by melt-blending and hot-pressing, in which photochromic microcapsules (PM) were used as a functional additive, and poly(vinyl acetate) (PVAc) was introduced into the photochromic PLA blends for the first time to improve their properties. The crystallization and melting behavior, morphology, and photochromic performance of PLA/PVAc/PM blends were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and spectrophotometer, respectively. The results showed that PVAc significantly improved the photochromic properties of PLA/PM blends. Under 30 s UV irradiation, the blends reached a value of ΔE that could be recognized in 3 s by human eyes. This discriminative ΔE value could be maintained for at least 3 min after removal from UV irradiation. Meanwhile, the blend had outstanding photochromic durability and recyclability. Compared to ΔE for 0.5 h of continuous light irradiation, ΔE for 8 h of continuous light irradiation decreased by only about 1, to 14.1. In 25 cycles of 3 s UV irradiation, the values of ΔE for the first and 25th irradiation were 11.4 and 11.6, respectively. The blend showed different photochromic responses to different light intensities. The ΔE values of 8.6, 14.6, 14.6, and 18.4 for irradiation at 600, 800, 1000, and 1200 W/m2 of solar intensity, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.124465