Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO2 under visible light irradiation

The role of dissolved oxygen, and of active species generated by photo-induced reactions with oxygen, in the photocatalytic degradation of phenol was investigated using polymer [poly-(fluorene-co-thiophene) with thiophene content of 30%, so-called PFT30] sensitized TiO2 (PFT30/TiO2) under visible li...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials Vol. 163; no. 2-3; pp. 843 - 847
Main Authors: DONGDONG ZHANG, RONGLIANG QIU, LIN SONG, ERIC, Brewer, YUEQI MO, XIONGFEI HUANG
Format: Journal Article
Language:English
Published: Kidlington Elsevier 30-04-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of dissolved oxygen, and of active species generated by photo-induced reactions with oxygen, in the photocatalytic degradation of phenol was investigated using polymer [poly-(fluorene-co-thiophene) with thiophene content of 30%, so-called PFT30] sensitized TiO2 (PFT30/TiO2) under visible light irradiation. The photoluminescent (PL) quantum yield of PFT30/TiO2 was about 30% of that of PFT30/Al(2)O(3), proving that electron transfer took place between the polymer and TiO2. The result that photocatalytic degradation of phenol was almost stopped when the solution was saturated with N(2) proved the importance of O(2). Addition of NaN(3), an effective quencher of singlet oxygen ((1)O(2)), caused about a 40% decrease in the phenol degradation ratio. Addition of alcohols caused about a 60% decrease in the phenol photodegradation ratio, indicating that the hydroxyl radicals (OH), whose presence was confirmed by electron spin resonance (ESR) spectroscopy, was the predominant active species in aqueous solution. In anhydrous solution, singlet oxygen ((1)O(2)) was the predominant species. These results indicate that oxygen plays a very important role in the photocatalytic degradation of phenol.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2008.07.036