On the Zonal Near-Constancy of Fractional Solar Absorption in the Atmosphere

Over Europe, a recent study found the fractional all-sky atmospheric solar absorption to be largely unaffected by variations in latitude, remaining nearly constant at its regional mean of 23% ± 1%, relative to the respective top-of-atmosphere insolation. The satellite-based CERES EBAF dataset (2000–...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate Vol. 29; no. 9; pp. 3423 - 3440
Main Authors: Hakuba, Maria Z., Folini, Doris, Wild, Martin
Format: Journal Article
Language:English
Published: Boston American Meteorological Society 01-05-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over Europe, a recent study found the fractional all-sky atmospheric solar absorption to be largely unaffected by variations in latitude, remaining nearly constant at its regional mean of 23% ± 1%, relative to the respective top-of-atmosphere insolation. The satellite-based CERES EBAF dataset (2000–10) confirms the weak latitude dependence within 23% ± 2%, representative of the near-global scale between 60°S and 60°N. Under clear-sky conditions, the fractional absorption follows the spatial imprint of the water vapor path, peaking in the tropics and decreasing toward the poles, accompanied by a slight hemispheric asymmetry. In the northern extratropics, the clear-sky absorption attains zonal near-constancy due to combined water vapor, surface albedo, and aerosol effects that are largely amiss in the Southern Hemisphere. In line with earlier studies, the CERES EBAF suggests an increase in atmospheric solar absorption due to clouds by on average 1.5% (5 W m−2) from 21.5% (78 W m−2) under clear-sky conditions to 23% (83 W m−2) under all-sky conditions (60°S–60°N). The low-level clouds in the extratropics act to enhance the absorption, whereas the high clouds in the tropics exhibit a near-zero effect. Consequently, clouds reduce the latitude dependence of fractional atmospheric solar absorption and yield a near-constant zonal mean pattern under all-sky conditions. In the GEWEX-SRB satellite product and the historical simulations from phase 5 of CMIP (CMIP5; 1996–2005, multimodel mean) the amount of insolation absorbed by the atmosphere is reduced by around −1.3% (5 W m−2) with respect to the CERES EBAF mean. The zonal variability and magnitude of the atmospheric cloud effect are, however, largely in line.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-15-0277.1