Distributed LMS estimation over networks with quantised communications
This article investigates the problem of distributed least mean-square (D-LMS) estimation over a network with quantised communication. Each node in the network has a quantiser consisting of a first-order dynamical encoder-decoder and can only communicate with its neighbours. Then a new D-LMS estimat...
Saved in:
Published in: | International journal of control Vol. 86; no. 3; pp. 478 - 492 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Abingdon
Taylor & Francis Group
01-03-2013
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article investigates the problem of distributed least mean-square (D-LMS) estimation over a network with quantised communication. Each node in the network has a quantiser consisting of a first-order dynamical encoder-decoder and can only communicate with its neighbours. Then a new D-LMS estimator is proposed by employing a weighted sum of the internal state differences between each node's quantiser and those of its neighbours. Performance analysis of the proposed quantised D-LMS algorithm is studied in terms of mean-square transient and steady-state measurements. We show that for Gaussian data and sufficiently small step sizes, the proposed cooperative D-LMS with quantisation is mean-square stable in all quantisation levels including the 1-bit case, and its performance approaches the cooperative D-LMS without quantisation when the quantisation step size is fairly small. Furthermore, although in unquantised case (infinite precision), the cooperative D-LMS always outperforms the non-cooperative D-LMS scheme (without communications among the neighbours); however, we show that due to the existence of quantisation error, the cooperative D-LMS with quantisation does not always outperform the non-cooperative D-LMS scheme, especially when the quantisation step size is quite large. Finally, numerical simulations also demonstrate that our theoretical performance matches well with experimental performance. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0020-7179 1366-5820 |
DOI: | 10.1080/00207179.2012.742569 |