Characterization of the surface and the interphase of PVC–copper amine-treated wood composites
Contact angles and surface energy of wood, as well as interfacial shear strength between wood and polyvinyl chloride (PVC) were investigated and used to monitor the modifications generated on the surfaces of wood treated with a copper ethanolamine solution. An increase in surface energy of wood afte...
Saved in:
Published in: | Applied surface science Vol. 256; no. 14; pp. 4559 - 4563 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
01-05-2010
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Contact angles and surface energy of wood, as well as interfacial shear strength between wood and polyvinyl chloride (PVC) were investigated and used to monitor the modifications generated on the surfaces of wood treated with a copper ethanolamine solution. An increase in surface energy of wood after treatments promotes wetting of PVC on wood surfaces. Improved interfacial shear strength between treated wood and PVC matrix can be attributed to the formation of a stronger wood–PVC interphase. This suggests that treatment may be used to improve the adhesion between wood surface and PVC in the formulation of wood fiber composites to yield products with enhanced mechanical properties and better biological and physical performance against decay and insect destroying wood. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2010.02.047 |