Methylated and ethylated dialkylphosphate metabolites of organophosphate pesticides: DNA damage in bone marrow cells of Balb/c mice

Dialkylphosphates (DAPs), metabolites of organophosphate (OP) pesticides, are widely distributed in the environment and are often used as biomarkers of OP exposure. Recent reports indicate that DAPs may be genotoxic, both in vitro and in vivo. We have examined the genotoxicity of the methylated DAPs...

Full description

Saved in:
Bibliographic Details
Published in:Mutation research. Genetic toxicology and environmental mutagenesis Vol. 889; p. 503641
Main Authors: Hernandez-Toledano, David Sebastián, Salazar-Osorio, Andrea Ixtchel, Medina-Buelvas, Dunia Margarita, Romero-Martínez, Jessica, Estrada-Muñiz, Elizabet, Vega, Libia
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dialkylphosphates (DAPs), metabolites of organophosphate (OP) pesticides, are widely distributed in the environment and are often used as biomarkers of OP exposure. Recent reports indicate that DAPs may be genotoxic, both in vitro and in vivo. We have examined the genotoxicity of the methylated DAPs dimethyldithiophosphate (DMDTP) and dimethylphosphate (DMTP) and the ethylated DAPs diethyldithiophosphate (DEDTP) and diethylphosphate (DETP), in comparison with their parental compounds, malathion and terbufos, respectively, in bone marrow polychromatic erythrocytes (PCE) of male and female Balb/c mice. We also compared DNA damage (comet assay) induced by DMDTP and dimethyl phosphate (DMP) in human cell lines. Both DMDTP and DMP caused DNA damage in peripheral blood mononuclear cells, HeLa cells, and the hepatic cell lines HepG2 and WRL-68. In the in vivo micronucleus assay, methylated and ethylated DAPs increased micronucleated PCE cells in both male and female mice. Female mice were more susceptible to DNA damage. In comparison to their parental compounds, methylated DAPs, particularly DMTP, were more genotoxic than malathion; DEDTP, DETP, and terbufos were similar in potency. These results suggest that DAPs may contribute to DNA damage associated with OP pesticide exposure. •Methylated and ethylated DAPs induce genotoxicity in both in vitro and in vivo models.•Genotoxicity of methylated DAPs is similar to their parental pesticides such as malathion.•Female mice are more susceptible to organophosphate compounds’ genotoxicity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1383-5718
1879-3592
DOI:10.1016/j.mrgentox.2023.503641