Behaviour and physiology are linked in the responses of freshwater mussels to drought

Summary 1. Droughts have become prevalent in the south‐eastern U.S.A. and are predicted to become more common in the future. Drought conditions have particularly strong negative effects on sessile aquatic organisms with limited dispersal ability. This study explored the linkages between physiologica...

Full description

Saved in:
Bibliographic Details
Published in:Freshwater biology Vol. 57; no. 11; pp. 2356 - 2366
Main Authors: GOUGH, HARLAN M., GASCHO LANDIS, ANDREW M., STOECKEL, JAMES A.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-11-2012
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary 1. Droughts have become prevalent in the south‐eastern U.S.A. and are predicted to become more common in the future. Drought conditions have particularly strong negative effects on sessile aquatic organisms with limited dispersal ability. This study explored the linkages between physiological tolerance, behavioural response and survival of three species of freshwater mussels subjected to drought. 2. To assess physiological tolerance, we measured survival under desiccation at 25, 35 and 45 °C in the laboratory. To assess behavioural responses, we tracked horizontal and vertical movement of mussels in a drying stream reach. 3. Uniomerus tetralasmus showed the greatest desiccation tolerance, Lampsilis straminea was intermediate, and Pyganodon grandis had the lowest tolerance at all temperatures. 4. In the drying stream reach, U. tetralasmus showed little horizontal movement and quickly became stranded. The other two species tracked the receding water. It was not until the pool had been reduced to c. 10% of its original size that ≥50% of P. grandis and L. straminea became stranded. 5. Uniomerus tetralasmus and L. straminea burrowed in response to becoming stranded; however, both species burrowed only shallowly (3–4 cm), presumably because burrowing to greater depths did not convey increasing thermal refuge. Pyganodon grandis rarely burrowed. No P. grandis survived the 15‐week drought, while 45% of L. straminea and 77% of U. tetralasmus survived. 6. Three strategies emerged for freshwater mussels to cope with drought conditions: tracking (intolerant), track then burrow (semi‐tolerant) and burrowing (tolerant). Results suggest that drought poses the greatest threat to intolerant trackers, while tolerant burrowers are the most resistant to drought conditions.
Bibliography:istex:5BD99ECAE27E6022D01AF9C5433E3FEF3CEB23B9
ark:/67375/WNG-2L78FML6-L
ArticleID:FWB12015
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0046-5070
1365-2427
DOI:10.1111/fwb.12015