Immobilization of the β-fructofuranosidase from Xanthophyllomyces dendrorhous by Entrapment in Polyvinyl Alcohol and Its Application to Neo-Fructooligosaccharides Production
The β-fructofuranosidase (Xd-INV) from the basidiomycota yeast Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) is unique in its ability to synthesize neo- fructooligosaccharides (neo-FOS). In order to facilitate its industrial application, the recombinant enzyme expressed in Pichia pastor...
Saved in:
Published in: | Catalysts Vol. 8; no. 5; p. 201 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-05-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The β-fructofuranosidase (Xd-INV) from the basidiomycota yeast Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) is unique in its ability to synthesize neo- fructooligosaccharides (neo-FOS). In order to facilitate its industrial application, the recombinant enzyme expressed in Pichia pastoris (pXd-INV) was immobilized by entrapment in polyvinyl alcohol (PVA) hydrogels. The encapsulation efficiency exceeded 80%. The PVA lenticular particles of immobilized pXd-INV were stable up to approximately 40 °C. Using 600 g/L sucrose, the immobilized biocatalyst synthesized 18.9% (w/w) FOS (59.1 g/L of neokestose, 30.2 g/L of 1-kestose, 11.6 g/L of neonystose and 12.6 g/L of blastose). The operational stability of PVA-immobilized biocatalyst was assayed in a batch reactor at 30 °C. The enzyme preserved its initial activity during at least 7 cycles of 26 h. |
---|---|
ISSN: | 2073-4344 |
DOI: | 10.3390/catal8050201 |