A Block-Based Interactive Programming Environment for Large-Scale Machine Learning Education
The existing block-based machine learning educational environments have a drawback in that they do not support model training based on large-scale data. This makes it difficult for young students to learn the importance of large amounts of data when creating machine learning models. In this paper, w...
Saved in:
Published in: | Applied sciences Vol. 12; no. 24; p. 13008 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-12-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The existing block-based machine learning educational environments have a drawback in that they do not support model training based on large-scale data. This makes it difficult for young students to learn the importance of large amounts of data when creating machine learning models. In this paper, we present a novel programming environment in which students can easily train machine learning models based on large-scale data using a block-based programming language. We redefine the interfaces of existing machine learning blocks and also develop an effective model training algorithm suitable for block-based programming languages to enable “instant training” and “large-scale training”. As example educational applications based on this environment, we presented what is termed a “Question-Answering Chatbot” program trained on 11,822 text data instances with 7784 classes as well as a “Celebrity Look-Alike” program trained on 4431 image data instances with 7 classes. The experimental results show that teachers and pre-service teachers give high scores on all four evaluation measures for this environment. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app122413008 |