Decentralized Offloading Strategies Based on Reinforcement Learning for Multi-Access Edge Computing

Using reinforcement learning technologies to learn offloading strategies for multi-access edge computing systems has been developed by researchers. However, large-scale systems are unsuitable for reinforcement learning, due to their huge state spaces and offloading behaviors. For this reason, this w...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) Vol. 12; no. 9; p. 343
Main Authors: Hu, Chunyang, Li, Jingchen, Shi, Haobin, Ning, Bin, Gu, Qiong
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using reinforcement learning technologies to learn offloading strategies for multi-access edge computing systems has been developed by researchers. However, large-scale systems are unsuitable for reinforcement learning, due to their huge state spaces and offloading behaviors. For this reason, this work introduces the centralized training and decentralized execution mechanism, designing a decentralized reinforcement learning model for multi-access edge computing systems. Considering a cloud server and several edge servers, we separate the training and execution in the reinforcement learning model. The execution happens in edge devices of the system, and edge servers need no communication. Conversely, the training process occurs at the cloud device, which causes a lower transmission latency. The developed method uses a deep deterministic policy gradient algorithm to optimize offloading strategies. The simulated experiment shows that our method can learn the offloading strategy for each edge device efficiently.
ISSN:2078-2489
2078-2489
DOI:10.3390/info12090343