Asymptotic homogenization analysis for damage amplification due to singular interaction of micro-cracks
The paper investigates the overall damage amplification effect due to micro-crack interaction in a framework of two-scale modeling. A homogenization method based on asymptotic expansions is employed to deduce the macroscopic damage equations. The damage model completely results from energy-based mic...
Saved in:
Published in: | Journal of the mechanics and physics of solids Vol. 60; no. 8; pp. 1478 - 1485 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-08-2012
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper investigates the overall damage amplification effect due to micro-crack interaction in a framework of two-scale modeling. A homogenization method based on asymptotic expansions is employed to deduce the macroscopic damage equations. The damage model completely results from energy-based micro-crack propagation laws. We consider a locally periodic microstructure with periods containing pairs of micro-cracks separated by small ligaments. The asymptotic solution in the ligament region allows the study of the effect of micro-crack interaction on the effective coefficients. The local macroscopic response expresses the collective coalescence of a periodic microstructure with interacting micro-cracks. We show that the slope of the homogenized coefficients is inversely proportional to the square root of the distance between the tips of the interacting micro-cracks, accounting for the singularity in the stress fields as the micro-cracks approach each other. This leads to damage amplification as the result of the interaction of micro-cracks. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-5096 |
DOI: | 10.1016/j.jmps.2012.04.004 |