Fitting Cotidal Charts of Eight Major Tidal Components in the Bohai Sea, Yellow Sea Based on Chebyshev Polynomial Method

High-precision tidal harmonic constants are necessary for studies involving tides. This study proposes a new method combined with the adjoint assimilation model and the Chebyshev polynomial fitting (CPF) method to obtain the tidal harmonic constants in the shallow-water region of the Bohai and Yello...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering Vol. 10; no. 9; p. 1219
Main Authors: Wang, Qixiang, Zhang, Yibo, Wang, Yonggang, Xu, Minjie, Lv, Xianqing
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-precision tidal harmonic constants are necessary for studies involving tides. This study proposes a new method combined with the adjoint assimilation model and the Chebyshev polynomial fitting (CPF) method to obtain the tidal harmonic constants in the shallow-water region of the Bohai and Yellow Sea (BYS). Based on the CPF method, the full-field harmonic constants and reliable cotidal charts of the eight major constituents (M2, S2, K1, O1, N2, K2, P1 and Q1) were fitted from the X-TRACK products briefly and this method was effectively for coastal conditions. Compared with the observations of the X-TRACK products and tidal gauges, for the M2 constituent, the TPXO9, Finite Element Solutions 2014 (FES2014), National Astronomical Observatory 99b (NAO.99b) and Empirical Ocean Tide 20 (EOT20) models yield the root-mean-square errors (RMSEs) of 18.50, 7.31, 18.73 and 13.32 cm, respectively, while the CPF method yields an RMSE of 10.74 cm. These results indicate that the CPF method could maintain high resolution and obtain accurate cotidal charts consistent with the simulations of the four models in shallow-water regions.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse10091219