Feature Selection Using Artificial Gorilla Troop Optimization for Biomedical Data: A Case Analysis with COVID-19 Data
Feature selection (FS) is commonly thought of as a pre-processing strategy for determining the best subset of characteristics from a given collection of features. Here, a novel discrete artificial gorilla troop optimization (DAGTO) technique is introduced for the first time to handle FS tasks in the...
Saved in:
Published in: | Mathematics (Basel) Vol. 10; no. 15; p. 2742 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-08-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Feature selection (FS) is commonly thought of as a pre-processing strategy for determining the best subset of characteristics from a given collection of features. Here, a novel discrete artificial gorilla troop optimization (DAGTO) technique is introduced for the first time to handle FS tasks in the healthcare sector. Depending on the number and type of objective functions, four variants of the proposed method are implemented in this article, namely: (1) single-objective (SO-DAGTO), (2) bi-objective (wrapper) (MO-DAGTO1), (3) bi-objective (filter wrapper hybrid) (MO-DAGTO2), and (4) tri-objective (filter wrapper hybrid) (MO-DAGTO3) for identifying relevant features in diagnosing a particular disease. We provide an outstanding gorilla initialization strategy based on the label mutual information (MI) with the aim of increasing population variety and accelerate convergence. To verify the performance of the presented methods, ten medical datasets are taken into consideration, which are of variable dimensions. A comparison is also implemented between the best of the four suggested approaches (MO-DAGTO2) and four established multi-objective FS strategies, and it is statistically proven to be the superior one. Finally, a case study with COVID-19 samples is performed to extract the critical factors related to it and to demonstrate how this method is fruitful in real-world applications. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10152742 |