Degradation of oxides and oxynitrides under hot hole stress
The impact of nitridation on hot hole injection and the induced degradation is quantitatively studied by comparing the behavior of a control oxide and oxynitrides. The oxynitride is prepared by either annealing the oxide in N/sub 2/O or growing directly in N/sub 2/O. The pMOSFET's are uniformly...
Saved in:
Published in: | IEEE transactions on electron devices Vol. 47; no. 2; pp. 378 - 386 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-02-2000
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The impact of nitridation on hot hole injection and the induced degradation is quantitatively studied by comparing the behavior of a control oxide and oxynitrides. The oxynitride is prepared by either annealing the oxide in N/sub 2/O or growing directly in N/sub 2/O. The pMOSFET's are uniformly stressed by using the substrate hot hole injection technique. The physical quantities analyzed include the hole injection current, the density of created interface states and the density of trapped holes. It is found that a 30 min annealing in N/sub 2/O at 950/spl deg/C can enhance the effective barrier for hole injection by 0.6 eV. However, the interface state generation during the injection is insensitive to nitridation. The continuing degradation post the hole injection is also investigated. This includes a poststress interface state build-up and the generation of new precursors for interface states. The nitridation reduces the poststress degradation considerably. Where it is necessary, the hole induced degradation is compared with that induced by electrons. The applicability of the models proposed for oxynitrides to the present results is examined. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/16.822284 |