Electro-spun Membranes as Scaffolds for Human Corneal Endothelial Cells
Background: Corneal endothelial dysfunction remains the most frequent indication for corneal transplantation, limited by donor material shortage, poor long-term graft survival, or allogeneic graft rejection. Therefore, tissue-engineered endothelial grafts (TEEG) represent a promising alternative to...
Saved in:
Published in: | Current eye research Vol. 43; no. 1; pp. 1 - 11 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Taylor & Francis
02-01-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Corneal endothelial dysfunction remains the most frequent indication for corneal transplantation, limited by donor material shortage, poor long-term graft survival, or allogeneic graft rejection. Therefore, tissue-engineered endothelial grafts (TEEG) represent a promising alternative to human donor tissue. In this study, we generated electro-spun scaffolds and tested these for their suitability for human corneal endothelial cell (hCEC) cultivation.
Methods: The polymers poly(methyl-methacrylate) (PMMA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL) were spun with equal parameters. HCEC-12 was cultured on the scaffolds for 3 to 7 days. Scaffolds were evaluated by light microscopy, porometry, light transmission, scanning electron microscopy (SEM), live/dead staining and cell viability assay.
Results: Electro-spun fibers from PMMA (2.99 ± 0.24 µm) showed significantly higher diameters than PCL (2.29 ± 0.11 µm; p = 0.003) and PLGA (1.84 ± 0.21 µm; p < 0.001), while fibers from PCL also showed larger diameters than those from PLGA (p = 0.002). PMMA scaffolds (26.77 ± 17.48 µm) had significantly larger interstitial spaces than those from PCL (13.30 ± 5.47 µm; p = 0.04) and PLGA (10.42 ± 6.15 µm; p = 0.002), while PCL and PLGA did not differ significantly (p = 0.26). SEM analysis revealed that only PLGA fibers preserved a normal HCEC-12 morphology. PLGA and PCL did not differ in cell number, death, or viability after 7 days of HCEC-12 cultivation. PMMA showed significantly higher cytotoxicity (p < 0.001; PLGA: 1626.2 ± 183.8 RLU; PMMA: 841.9 ± 92.7 RLU; PCL: 1580.2 ± 171.02 RLU).
Conclusions: The biodegradable PLGA and PCL electro-spun scaffolds resulted in equal biocompatibility, while PMMA showed cytotoxicity. Only PLGA preserved hCEC morphology and consequently seems to be a promising candidate for TEEG construction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0271-3683 1460-2202 |
DOI: | 10.1080/02713683.2017.1377258 |