Efficient musculoskeletal annotation using free-form deformation
Traditionally, constructing training datasets for automatic muscle segmentation from medical images involved skilled operators, leading to high labor costs and limited scalability. To address this issue, we developed a tool that enables efficient annotation by non-experts and assessed its effectiven...
Saved in:
Published in: | Scientific reports Vol. 14; no. 1; pp. 16077 - 11 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
12-07-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traditionally, constructing training datasets for automatic muscle segmentation from medical images involved skilled operators, leading to high labor costs and limited scalability. To address this issue, we developed a tool that enables efficient annotation by non-experts and assessed its effectiveness for training an automatic segmentation network. Our system allows users to deform a template three-dimensional (3D) anatomical model to fit a target magnetic-resonance image using free-form deformation with independent control points for axial, sagittal, and coronal directions. This method simplifies the annotation process by allowing non-experts to intuitively adjust the model, enabling simultaneous annotation of all muscles in the template. We evaluated the quality of the tool-assisted segmentation performed by non-experts, which achieved a Dice coefficient greater than 0.75 compared to expert segmentation, without significant errors such as mislabeling adjacent muscles or omitting musculature. An automatic segmentation network trained with datasets created using this tool demonstrated performance comparable to or superior to that of networks trained with expert-generated datasets. This innovative tool significantly reduces the time and labor costs associated with dataset creation for automatic muscle segmentation, potentially revolutionizing medical image annotation and accelerating the development of deep learning-based segmentation networks in various clinical applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-67125-3 |