Optimum semiconductors for high-power electronics
Elemental and compound semiconductors, including wide-bandgap semiconductors, are critically examined for high-power electronic applications in terms of several parameters. On the basis of an analysis applicable to a wide range of semiconducting materials and by using the available measured physical...
Saved in:
Published in: | IEEE transactions on electron devices Vol. 36; no. 9; pp. 1811 - 1823 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-09-1989
Institute of Electrical and Electronics Engineers |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Elemental and compound semiconductors, including wide-bandgap semiconductors, are critically examined for high-power electronic applications in terms of several parameters. On the basis of an analysis applicable to a wide range of semiconducting materials and by using the available measured physical parameters, it is shown that wide-bandgap semiconductors such as SiC and diamond could offer significant advantages compared to either silicon or group III-V compound semiconductors for these applications. The analysis uses peak electric field strength at avalanche breakdown as a critical material parameter for evaluating the quality of a semiconducting material for high-power electronics. Theoretical calculations show improvement by orders of magnitude in the on-resistance, twentyfold improvement in the maximum frequency of operation, and potential for successful operation at temperatures beyond 600 degrees C for diamond high-power devices. New figures of merit for power-handling capability that emphasize electrical and thermal conductivities of the material are derived and are applied to various semiconducting materials. It is shown that an improvement in power-handling capabilities of semiconductor devices by three orders of magnitude is feasible by replacing silicon with silicon carbide; improvement in power-handling capability by six orders of magnitude is projected for diamond-based devices.< > |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/16.34247 |