Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites
Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix comp...
Saved in:
Published in: | Science (American Association for the Advancement of Science) Vol. 370; no. 6522 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
The American Association for the Advancement of Science
11-12-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program.
knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.aba4937 |