Current Control for Synchronous Motor Drives: Direct Discrete-Time Pole-Placement Design

This paper deals with discrete-time models and current control methods for synchronous motors with a magnetically salient rotor structure, such as interior permanent-magnet synchronous motors and synchronous reluctance motors (SyRMs). The dynamic performance of current controllers based on the conti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications Vol. 52; no. 2; pp. 1530 - 1541
Main Authors: Hinkkanen, Marko, Asad Ali Awan, Hafiz, Zengcai Qu, Tuovinen, Toni, Briz, Fernando
Format: Journal Article
Language:English
Published: New York IEEE 01-03-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with discrete-time models and current control methods for synchronous motors with a magnetically salient rotor structure, such as interior permanent-magnet synchronous motors and synchronous reluctance motors (SyRMs). The dynamic performance of current controllers based on the continuous-time motor model is limited, particularly if the ratio of the sampling frequency to the fundamental frequency is low. An exact closed-form hold-equivalent discrete motor model is derived. The zero-order hold of the stator-voltage input is modeled in stationary coordinates, where it physically is. An analytical discrete-time pole-placement design method for two-degrees-of-freedom proportional-integral current control is proposed. The proposed method is easy to apply: only the desired closed-loop bandwidth and the three motor parameters (Rs, Ld, Lq) are required. The robustness of the proposed current control design against parameter errors is analyzed. The controller is experimentally verified using a 6.7-kW SyRM drive.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2015.2495288