Syk‐Induced Phosphatidylinositol‐3‐Kinase Activation in Epstein–Barr Virus Posttransplant Lymphoproliferative Disorder
Posttransplant lymphoproliferative disorder (PTLD)‐associated Epstein–Barr virus (EBV)+ B cell lymphomas are serious complications of solid organ and bone marrow transplantation. The EBV protein LMP2a, a B cell receptor (BCR) mimic, provides survival signals to virally infected cells through Syk tyr...
Saved in:
Published in: | American journal of transplantation Vol. 13; no. 4; pp. 883 - 890 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, NJ
Wiley
01-04-2013
Elsevier Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Posttransplant lymphoproliferative disorder (PTLD)‐associated Epstein–Barr virus (EBV)+ B cell lymphomas are serious complications of solid organ and bone marrow transplantation. The EBV protein LMP2a, a B cell receptor (BCR) mimic, provides survival signals to virally infected cells through Syk tyrosine kinase. Therefore, we explored whether Syk inhibition is a viable therapeutic strategy for EBV‐associated PTLD. We have shown that R406, the active metabolite of the Syk inhibitor fostamatinib, induces apoptosis and cell cycle arrest while decreasing downstream phosphatidylinositol‐3′‐kinase (PI3K)/Akt signaling in EBV+ B cell lymphoma PTLD lines in vitro. However, Syk inhibition did not inhibit or delay the in vivo growth of solid tumors established from EBV‐infected B cell lines. Instead, we observed tumor growth in adjacent inguinal lymph nodes exclusively in fostamatinib‐treated animals. In contrast, direct inhibition of PI3K/Akt significantly reduced tumor burden in a xenogeneic mouse model of PTLD without evidence of tumor growth in adjacent inguinal lymph nodes. Taken together, our data indicate that Syk activates PI3K/Akt signaling which is required for survival of EBV+ B cell lymphomas. PI3K/Akt signaling may be a promising therapeutic target for PTLD, and other EBV‐associated malignancies.
The authors demonstrate that small molecule inhibition of the PI3K/Akt pathway reduces tumor formation and tumor burden in a xenotransplantation model of Epstein—Barr virus—positive posttransplant lymphoproliferative disorder. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1600-6135 1600-6143 |
DOI: | 10.1111/ajt.12137 |