In vivo quantification of volatile organoselenium compounds released by bacteria exposed to selenium with HS-SPME-GC-MS. Effect of selenite and selenium nanoparticles

Quantification of volatile organoselenium species released by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), after their growth in the presence of 1 and 2 mg Se·L-1 as both selenite and chitosan-modified selenium nanoparticles (Ch-SeNPs), was achieved by the application of a metho...

Full description

Saved in:
Bibliographic Details
Published in:Talanta (Oxford) Vol. 224; p. 121907
Main Authors: Moreno-Martin, Gustavo, Sanz-Landaluze, Jon, León-González, María Eugenia, Madrid, Yolanda
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-03-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantification of volatile organoselenium species released by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), after their growth in the presence of 1 and 2 mg Se·L-1 as both selenite and chitosan-modified selenium nanoparticles (Ch-SeNPs), was achieved by the application of a method based on headspace solid-phase microextraction (HS-SPME) and in-fiber internal standardization, combined with gas chromatography coupled to mass spectrometry (GC-MS). This method consisted of an initial extraction of the released volatile organoselenium compounds on the SPME fiber, followed by the extraction of internal standard (IS), deuterated dimethyl sulfide (d6-DMS), on the same fiber before its desorption at the injection port of GC-MS. The results showed that the biotransformation of selenite and Ch-SeNPs into volatile organoselenium compounds was dependent on both the type of bacterial species and the chemical form of selenium (Se) administered. In this sense, E. coli was able to biotransform both selenite and Ch-SeNPs into dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) while S. aureus, biotransformed selenite into DMSe and DMDSe and, Ch-SeNPs only into DMDSe. Additionally, the formation of a volatile mixed sulfur/selenium compound, dimethyl selenenyl sulfide (DMSeS), from Se in nanoparticulated form has been detected for the first time. [Display omitted] •HS-SPME-GC was applied for in vivo quantification of DMDSe by bacteria.•E. coli and S. aureus biotransform SeNPs into volatile Se and mixed Se/S compounds.•DMSe, DMDSe and DMDSeS were released by E. coli and S. aureus.•DMSe and DMDSe formation depended on the bacterial species and the Se form.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2020.121907