Effect of cobalt doping level of ferrites in enhancing sensitivity of analytical performances of carbon paste electrode for simultaneous determination of catechol and hydroquinone

This work presents the simultaneous determination of catechol (CC) and hydroquinone (HQ), employing a modified carbon paste electrode (CPE) with ferrite nanomaterial. Ferrite nanomaterial was doped with different amount of cobalt and this was investigated toward simultaneous oxidation of CC and HQ....

Full description

Saved in:
Bibliographic Details
Published in:Talanta (Oxford) Vol. 161; pp. 668 - 674
Main Authors: Lakić, Mladen, Vukadinović, Aleksandar, Kalcher, Kurt, Nikolić, Aleksandar S., Stanković, Dalibor M.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-12-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents the simultaneous determination of catechol (CC) and hydroquinone (HQ), employing a modified carbon paste electrode (CPE) with ferrite nanomaterial. Ferrite nanomaterial was doped with different amount of cobalt and this was investigated toward simultaneous oxidation of CC and HQ. It was shown that this modification strongly increases electrochemical characteristics of the CPE. Also, electrocatalytic activity of such materials strongly depends on the level of substituted Co in the ferrite nanoparticles. The modified electrodes, labeled as CoFerrite/CPE, showed two pairs of well-defined redox peaks for the electrochemical processes of catechol and hydroquinone. Involving of ferrite material in the structure of CPE, cause increase in the potentials differences between redox couples of the investigated compounds, accompanied with increases in peaks currents. Several important parameters were optimized and calibration curves, with limits of detection (LOD) of 0.15 and 0.3µM for catechol and hydroquinone, respectively, were constructed by employing amperometric detection. Effect of possible interfering compounds was also studied, and proposed method was successfully applied for CC and HQ quantification in real samples. [Display omitted] •Application of cobalt ferrite nanomaterial in electroanalytical chemistry was evaluated.•Different level of doped cobalt was investigated toward catechol and hydroquinone oxidation.•Satisfactory selectivity and sensitivity were obtained with novel modified electrode.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2016.09.029