Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane

We investigate the resistive-pulse sensing of 50-bp DNA using track-etched polycarbonate (PC) nanopores and show the translocation dynamics originating from the electrophoretic transport of DNAs. Conically shaped PC nanopore membranes have been prepared with asymmetric chemical etching technique. We...

Full description

Saved in:
Bibliographic Details
Published in:Talanta (Oxford) Vol. 144; pp. 268 - 274
Main Authors: Kececi, Kaan, San, Nevim, Kaya, Dila
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-11-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the resistive-pulse sensing of 50-bp DNA using track-etched polycarbonate (PC) nanopores and show the translocation dynamics originating from the electrophoretic transport of DNAs. Conically shaped PC nanopore membranes have been prepared with asymmetric chemical etching technique. We show the potential and concentration dependence of DNA translocation through a PC nanopore. We find that the translocation of DNA scales linearly with both potential and concentration. Additionally, the threshold potential is determined to complete the translocation. Finally, by investigating the current-pulse amplitudes of nanopores with different tip sizes, we show that the nanopore size can be successfully used to distinguish the DNA molecules. These results suggest great promise for the sensing of short DNAs and understanding the dynamics of the translocation process using chemically-etched PC nanopores. [Display omitted] •Track-etched polycarbonate membranes were used to fabricate nanopores.•Asymmetric chemical etching has been performed to shape the nanopore in conical shape.•50-bp DNAs have been used as a model molecule.•Potential and concentration dependence of short DNA translocation have been shown.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2015.06.005