AutoMeKin2021: An open‐source program for automated reaction discovery

AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem. 2018, 39, 1922). This release features a number of new capabilities: rare‐event molecular dynamics simulations to enhance reaction discovery, extension of the original se...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry Vol. 42; no. 28; pp. 2036 - 2048
Main Authors: Martínez‐Núñez, Emilio, Barnes, George L., Glowacki, David R., Kopec, Sabine, Peláez, Daniel, Rodríguez, Aurelio, Rodríguez‐Fernández, Roberto, Shannon, Robin J., Stewart, James J. P., Tahoces, Pablo G., Vazquez, Saulo A.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 30-10-2021
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem. 2018, 39, 1922). This release features a number of new capabilities: rare‐event molecular dynamics simulations to enhance reaction discovery, extension of the original search algorithm to study van der Waals complexes, use of chemical knowledge, a new search algorithm based on bond‐order time series analysis, statistics of the chemical reaction networks, a web application to submit jobs, and other features. The source code, manual, installation instructions and the website link are available at: https://rxnkin.usc.es/index.php/AutoMeKin AutoMeKin is an open‐source package for automated reaction discovery. The source code, manual, installation instructions and web interface to submit online jobs are available at: https://rxnkin.usc.es/index.php/AutoMeKin
Bibliography:Funding information
Ministerio de Ciencia e Innovación, Grant/Award Number: PID2019‐107307RB‐I00; National Science Foundation, Grant/Award Number: 1763652
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0192-8651
1096-987X
DOI:10.1002/jcc.26734