Image Region Prediction from Thermal Videos Based on Image Prediction Generative Adversarial Network
Various studies have been conducted on object detection, tracking, and action recognition based on thermal images. However, errors occur during object detection, tracking, and action recognition when a moving object leaves the field of view (FOV) of a camera and part of the object becomes invisible....
Saved in:
Published in: | Mathematics (Basel) Vol. 9; no. 9; p. 1053 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-05-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Various studies have been conducted on object detection, tracking, and action recognition based on thermal images. However, errors occur during object detection, tracking, and action recognition when a moving object leaves the field of view (FOV) of a camera and part of the object becomes invisible. However, no studies have examined this issue so far. Therefore, this article proposes a method for widening the FOV of the current image by predicting images outside the FOV of the camera using the current image and previous sequential images. In the proposed method, the original one-channel thermal image is converted into a three-channel thermal image to perform image prediction using an image prediction generative adversarial network. When image prediction and object detection experiments were conducted using the marathon sub-dataset of the Boston University-thermal infrared video (BU-TIV) benchmark open dataset, we confirmed that the proposed method showed the higher accuracies of image prediction (structural similarity index measure (SSIM) of 0.9839) and object detection (F1 score (F1) of 0.882, accuracy (ACC) of 0.983, and intersection over union (IoU) of 0.791) than the state-of-the-art methods. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9091053 |