Nonisothermal Kinetic Degradation of Hybrid CNT/Alumina Epoxy Nanocomposites
Due to the synergistic effect that occurs between CNTs and alumina, CNT/alumina hybrid-filled epoxy nanocomposites show significant enhancements in tensile properties, flexural properties, and thermal conductivity. This study is an extension of previously reported investigations into CNT/alumina epo...
Saved in:
Published in: | Metals (Basel ) Vol. 11; no. 4; p. 657 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-04-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the synergistic effect that occurs between CNTs and alumina, CNT/alumina hybrid-filled epoxy nanocomposites show significant enhancements in tensile properties, flexural properties, and thermal conductivity. This study is an extension of previously reported investigations into CNT/alumina epoxy nanocomposites. A series of epoxy composites with different CNT/alumina loadings were investigated with regard to their thermal-degradation kinetics and lifetime prediction. The thermal-degradation parameters were acquired via thermogravimetric analysis (TGA) in a nitrogen atmosphere. The degradation activation energy was determined using the Flynn–Wall–Ozawa (F-W-O) method for the chosen apparent activation energy. The Ea showed significant differences at α > 0.6, which indicate the role played by the CNT/alumina hybrid filler loading in the degradation behavior. From the calculations, the lifetime prediction at 5% mass loss decreased with an increase in the temperature service of nitrogen. The increase in the CNT/alumina hybrid loading revealed its contribution towards thermal degradation and stability. On average, a higher Ea was attributed to greater loadings of the CNT/alumina hybrid in the composites. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met11040657 |