Order-by-disorder in classical oscillator systems

We consider classical nonlinear oscillators on hexagonal lattices. When the coupling between the elements is repulsive, we observe coexisting states, each one with its own basin of attraction. These states differ by their degree of synchronization and by patterns of phase-locked motion. When disorde...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. B, Condensed matter physics Vol. 86; no. 12
Main Authors: Ionita, Florin, Labavić, Darka, Zaks, Michael A., Meyer-Ortmanns, Hildegard
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-12-2013
Springer
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider classical nonlinear oscillators on hexagonal lattices. When the coupling between the elements is repulsive, we observe coexisting states, each one with its own basin of attraction. These states differ by their degree of synchronization and by patterns of phase-locked motion. When disorder is introduced into the system by additive or multiplicative Gaussian noise, we observe a non-monotonic dependence of the degree of order in the system as a function of the noise intensity: intervals of noise intensity with low synchronization between the oscillators alternate with intervals where more oscillators are synchronized. In the latter case, noise induces a higher degree of order in the sense of a larger number of nearly coinciding phases. This order-by-disorder effect is reminiscent to the analogous phenomenon known from spin systems. Surprisingly, this non-monotonic evolution of the degree of order is found not only for a single interval of intermediate noise strength, but repeatedly as a function of increasing noise intensity. We observe noise-driven migration of oscillator phases in a rough potential landscape.
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/e2013-40998-8