RNA-Seq Analysis of Gene Expression Changes Related to Delay of Flowering Time under Drought Stress in Tropical Maize

Few studies have reported on the flowering time mechanism of tropical maize under short-day conditions. Drought, another important factor that affects flowering time, has been reported to delay the silking date in tropical maize. However, due to the lack of genetic information related to flowering i...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 11; no. 9; p. 4273
Main Authors: Kim, Kyung-Hee, Song, Kitae, Park, Jeong-Min, Kim, Jae-Yoon, Lee, Byung-Moo
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-05-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Few studies have reported on the flowering time mechanism of tropical maize under short-day conditions. Drought, another important factor that affects flowering time, has been reported to delay the silking date in tropical maize. However, due to the lack of genetic information related to flowering in maize, the mechanism by which drought delays flowering is unclear. To further understand this process, we analyzed drought-responsive genes using RNA sequencing and identified genes related to flowering time, including contigs from de novo assembly. The results revealed changes in the expression of flowering-time genes, including INDETERMINATE1 (ID1), Heading date 3a (Hd3a), CONSTANS-like genes, and ZEA MAYS CENTRORADIALES8 (ZCN8), which are known to be crucial factors in flowering. In particular, Hd3a, CONZ1, and ZCN8, which have been reported to accelerate flowering under short-day conditions, were downregulated by drought stress. Changes in gene expression appear to play an important role in changes in flowering time under drought. These expression profiles will help to further understand the flowering-time genes of tropical maize and the delayed flowering time resulting from drought.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11094273