Differential capacity as a spectroscopic probe for the investigation of alkali metal insertion reactions

Detailed electrochemical measurements have been carried out on metallic Li cells utilizing composite cathodes derived from two batches of the non-stoichiometric lithium insertion compound, V6O13. Powder XRD of the as-made materials and particle size analysis of the electrode stocks revealed only min...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta Vol. 41; no. 16; pp. 2639 - 2646
Main Authors: Barker, J., Saidi, M.Y., Koksbang, R.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01-01-1996
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Detailed electrochemical measurements have been carried out on metallic Li cells utilizing composite cathodes derived from two batches of the non-stoichiometric lithium insertion compound, V6O13. Powder XRD of the as-made materials and particle size analysis of the electrode stocks revealed only minor differences between the two batches. The electrochemical analysis indicated that the lithium insertion reactions into V6O13 were far more complicated than have been suggested by the relatively simple three voltage plateau relationship described previously in the literature[21]. Electrochemical voltage spectroscopy studies revealed differential capacity profiles which included up to eight discrete peaks related to lithium insertion reactions at energetically inequivalent sites within the host lattice. There were also readily discernible differences between the differential capacity features from the two V6O13 batches. For instance, one batch had two additional features at cell potentials of 2.87V and 2.58 V. Further, it was possible to detect distinct differences in the shapes and relative sizes of some of the peaks. The sensitivity (in terms of discharge capacity) of the differential capacity method was demonstrated to be better than 2% for the overall discharge reaction. It is concluded that the measurement of the differential capacity may be viewed as a true spectroscopic probe for alkali metal insertions reactions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0013-4686
1873-3859
DOI:10.1016/0013-4686(96)00087-4