Comparative Analysis of Primary Photosynthetic Reactions Assessed by OJIP Kinetics in Three Brassica Crops after Drought and Recovery

Plant drought tolerance depends on adaptations of the photosynthetic apparatus to changing environments triggered by water deficit. The seedlings of three Brassica crops differing in drought sensitivity, Brassica oleracea L. var. capitata—white cabbage, Brassica oleracea L. var. acephala—kale, and B...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 13; no. 5; p. 3078
Main Authors: Antunović Dunić, Jasenka, Mlinarić, Selma, Pavlović, Iva, Lepeduš, Hrvoje, Salopek-Sondi, Branka
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-03-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant drought tolerance depends on adaptations of the photosynthetic apparatus to changing environments triggered by water deficit. The seedlings of three Brassica crops differing in drought sensitivity, Brassica oleracea L. var. capitata—white cabbage, Brassica oleracea L. var. acephala—kale, and Brassica rapa L. var. pekinensis—Chinese cabbage, were exposed to drought by withholding water. Detailed insight into the photosynthetic machinery was carried out when the seedling reached a relative water content of about 45% and after re-watering by analyzing the OJIP kinetics. The key objective of this study was to find reliable parameters for distinguishing drought−tolerant and drought-sensitive varieties before permanent structural and functional changes in the photosynthetic apparatus occur. According to our findings, an increase in the total performance index (PItotal) and structure–function index (SFI), positive L and K bands, total driving forces (ΔDF), and drought resistance index (DRI) suggest drought tolerance. At the same time, susceptible varieties can be distinguished based on negative L and K bands, PItotal, SFI, and the density of reaction centers (RC/CS0). Kale proved to be the most tolerant, Chinese cabbage was moderately susceptible, and white cabbage showed high sensitivity to the investigated drought stress. The genetic variation revealed among the selected Brassica crops could be used in breeding programs and high-precision crop management.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13053078