Hydrodynamic Hysteresis and Solute Transport in Agglomerated Heaps under Irrigation, Stacking, and Bioleaching Controlling
Hydrodynamic hysteresis exists widely in agglomerated heaps with well-developed intra-pores, and it directly affects solute transports and bioleaching reaction. In this paper, the dynamic liquid retention behavior under different heap porosity and irrigation condition is quantified via a novel real-...
Saved in:
Published in: | Minerals (Basel) Vol. 12; no. 12; p. 1623 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-12-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrodynamic hysteresis exists widely in agglomerated heaps with well-developed intra-pores, and it directly affects solute transports and bioleaching reaction. In this paper, the dynamic liquid retention behavior under different heap porosity and irrigation condition is quantified via a novel real-time, in-situ liquid retention characterizing system (RILRCS), and the potential effects of initial liquid retention on solute transport and leaching reaction are carefully discussed. The results show that the immobile liquid is dominant in agglomerated heaps. The ratio of immobile and mobile liquid (η) dynamically changes due to mineral dissolution and new flow path appearances. The η normally increases and mobile liquid occupies a higher proportion due to acidic leaching reactions, especially at a smaller Rg (10.32 mm) and a larger u (0.10 mm/s). The dynamic liquid retention is more sensitive to the diameter of packed feeds (Rg) and superficial flow rate (u) instead of leaching reactions. This might be because the damage of leaching reaction on minerals pores/voids is limited and cannot extensively change the potential pore channels or fluid flow paths. Based on pulse tracing and conductivity tests, we reveal that the solute resides longer under a slower u and smaller packed Rg condition, which corresponds well with desirable copper leaching efficiency. Specifically, the liquid hysteresis behavior is more obvious at a lower u (0.01 mm/s) and smaller Rg (10.32 mm). This paper gives a good reference to ascertain the liquid retention and hydrodynamic hysteresis and promote mineral leaching performance. |
---|---|
ISSN: | 2075-163X |
DOI: | 10.3390/min12121623 |