Visual Tracking with FPN Based on Transformer and Response Map Enhancement
Siamese network-based trackers satisfy the balance between performance and efficiency for visual tracking. However, they do not have enough robustness to handle the challenges of target occlusion and similar objects. In order to improve the robustness of the tracking algorithm, this paper proposes v...
Saved in:
Published in: | Applied sciences Vol. 12; no. 13; p. 6551 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-07-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Siamese network-based trackers satisfy the balance between performance and efficiency for visual tracking. However, they do not have enough robustness to handle the challenges of target occlusion and similar objects. In order to improve the robustness of the tracking algorithm, this paper proposes visual tracking with FPN based on Transformer and response map enhancement. In this paper, a feature pyramid structure based on Transformer is designed to encode robust target-specific appearance features, as well as the response map enhanced module to improve the tracker’s ability to distinguish object and background. Extensive experiments and ablation experiments are conducted on many challenging benchmarks such as UAV123, GOT-10K, LaSOT and OTB100. These results show that the tracking algorithm we proposed in this paper can effectively improve the tracking robustness against the challenges of target occlusion and similar object, and thus improve the precision rate and success rate of the tracking algorithm. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12136551 |