Maximizing the consistency between regional and global reference frames utilizing inheritance of seasonal displacement parameters

Although modern global geometric reference frames (GRFs) such as the International Terrestrial Reference Frame (ITRF) can be used anywhere on Earth, regional reference frames (RRFs) are still used to densify geodetic control and optimize solutions for continental-scale areas and national purposes. S...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geodesy Vol. 96; no. 2
Main Authors: Gómez, Demián D., Bevis, Michael G., Caccamise, Dana J.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-02-2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although modern global geometric reference frames (GRFs) such as the International Terrestrial Reference Frame (ITRF) can be used anywhere on Earth, regional reference frames (RRFs) are still used to densify geodetic control and optimize solutions for continental-scale areas and national purposes. Such RRFs can be formed by densifying the ITRF, utilizing GPS / GNSS stations common to both the ITRF and the RRF. It is possible to attach a RRF to a GRF by ensuring that some or all of the coefficients of the trajectory models in the RRF are ‘inherited’ from the trajectory models that define the GRF. This can be done on an epoch-by-epoch basis, or (our preference) via transformations that operate simultaneously in space and time. This paper documents inconsistencies in the densification of ITRF that arise when the common stations’ trajectory models ignore periodic displacements. This results in periodic coordinate biases in the RRF. We describe a generalized procedure to minimize this inconsistency when realizing any RRF aligned to the ITRF or any other ‘primary’ frame. We show the method used to realize the Argentine national frame Posiciones Geodésicas Argentinas (POSGAR) and discuss our results. Discrepancies in the periodic motion amplitudes in the vertical were reduced from 4 mm to less than 1 mm for multiple stations after applying our technique. We also propose adopting object-oriented programming terminology to describe the relationship between different reference frames, such as a regional and a global frame. This terminology assists in describing and understanding the hierarchy in geodetic reference frames.
ISSN:0949-7714
1432-1394
DOI:10.1007/s00190-022-01594-0