Incorporating multiple distance spaces in optimum-path forest classification to improve feedback-based learning
► Two feedback-based learning methods based on OPF and multiple distance space. ► They solve image retrieval in a few iterations of relevance feedback. ► Considerable gains in effectiveness are demonstrated. In content-based image retrieval (CBIR) using feedback-based learning, the user marks the re...
Saved in:
Published in: | Computer vision and image understanding Vol. 116; no. 4; pp. 510 - 523 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier Inc
01-04-2012
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ► Two feedback-based learning methods based on OPF and multiple distance space. ► They solve image retrieval in a few iterations of relevance feedback. ► Considerable gains in effectiveness are demonstrated.
In content-based image retrieval (CBIR) using feedback-based learning, the user marks the relevance of returned images and the system learns how to return more relevant images in a next iteration. In this learning process, image comparison may be based on distinct distance spaces due to multiple visual content representations. This work improves the retrieval process by incorporating multiple distance spaces in a recent method based on optimum-path forest (OPF) classification. For a given training set with relevant and irrelevant images, an optimization algorithm finds the best distance function to compare images as a combination of their distances according to different representations. Two optimization techniques are evaluated: a multi-scale parameter search (MSPS), never used before for CBIR, and a genetic programming (GP) algorithm. The combined distance function is used to project an OPF classifier and to rank images classified as relevant for the next iteration. The ranking process takes into account relevant and irrelevant representatives, previously found by the OPF classifier. Experiments show the advantages in effectiveness of the proposed approach with both optimization techniques over the same approach with single distance space and over another state-of-the-art method based on multiple distance spaces. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1077-3142 1090-235X |
DOI: | 10.1016/j.cviu.2011.12.001 |