Predicting post-treatment symptom severity for adults receiving psychological therapy in routine care for generalised anxiety disorder: a machine learning approach
Approximately half of generalised anxiety disorder (GAD) patients do not recover from first-line treatments, and no validated prediction models exist to inform individuals or clinicians of potential treatment benefits. This study aimed to develop and validate an accurate and explainable prediction m...
Saved in:
Published in: | Psychiatry research Vol. 336; p. 115910 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Ireland
Elsevier B.V
01-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Approximately half of generalised anxiety disorder (GAD) patients do not recover from first-line treatments, and no validated prediction models exist to inform individuals or clinicians of potential treatment benefits. This study aimed to develop and validate an accurate and explainable prediction model of post-treatment GAD symptom severity. Data from adults receiving treatment for GAD in eight Improving Access to Psychological Therapies (IAPT) services (n=15,859) were separated into training, validation and holdout datasets. Thirteen machine learning algorithms were compared using 10-fold cross-validation, against two simple clinically relevant comparison models. The best-performing model was tested on the holdout dataset and model-specific explainability measures identified the most important predictors. A Bayesian Additive Regression Trees model out-performed all comparison models (MSE=16.54 [95 % CI=15.58; 17.51]; MAE=3.19; R²=0.33, including a single predictor linear regression model: MSE=20.70 [95 % CI=19.58; 21.82]; MAE=3.94; R²=0.14). The five most important predictors were: PHQ-9 anhedonia, GAD-7 annoyance/irritability, restlessness and fear items, then the referral-assessment waiting time. The best-performing model accurately predicted post-treatment GAD symptom severity using only pre-treatment data, outperforming comparison models that approximated clinical judgement and remaining within the GAD-7 error of measurement and minimal clinically important differences. This model could inform treatment decision-making and provide desired information to clinicians and patients receiving treatment for GAD. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0165-1781 1872-7123 |
DOI: | 10.1016/j.psychres.2024.115910 |