Effect of geometrical shape of the working substance Gadolinium on the performance of a regenerative magnetic Brayton refrigeration cycle

Based on Mean Field Theory (MFT), the entropy of magnetic material Gadolinium (Gd), which is a function of the local magnetic field and temperature, is calculated and analyzed. This local magnetic field is the sum of the applied field H0 plus the exchange field HW=λM and the demagnetizing field Hd=−...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials Vol. 326; pp. 103 - 107
Main Authors: Diguet, Gildas, Lin, Guoxing, Chen, Jincan
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-01-2013
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on Mean Field Theory (MFT), the entropy of magnetic material Gadolinium (Gd), which is a function of the local magnetic field and temperature, is calculated and analyzed. This local magnetic field is the sum of the applied field H0 plus the exchange field HW=λM and the demagnetizing field Hd=−NM, where the demagnetizing factor N depends on the shape of magnetic materials. Hereby, the impacts of the demagnetizing factor N on the magnetic entropy, magnetic entropy change and main thermodynamics performance of a regenerative magnetic Brayton refrigeration cycle using Gd as the working substance are investigated and evaluated in detail. The results obtained underline the importance of the shape of the working substance used in magnetic refrigerators for room-temperature application; elongated materials provide better thermodynamics performance such as higher COP and net heat absorption. It is pointed out that for low external fields, the magnetic refrigerator ceased to be functional if flat materials were used. ► Gd entropy is calculated as a function of temperature and internal magnetic field. ► Magnetic Brayton cycle properties generally depend on the demagnetizing factor. ► Redundant heat transfer is highly sensitive to the demagnetizing factor. ► The net cooling quantity is highly sensitive to the demagnetizing factor. ► Coefficient of performance is dependant to the magnetic material shape.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-8853
DOI:10.1016/j.jmmm.2012.08.044