Nutrient-stimulated GLP-2 release and crypt cell proliferation in experimental short bowel syndrome
Glucagon-like peptide-2 (GLP-2) is an enteroendocrine peptide that is released in response to luminal nutrients and has unique trophic actions in the gastrointestinal tract. These features suggest GLP-2 may be important in controlling intestinal adaptation. We examined the relationship over time of...
Saved in:
Published in: | American journal of physiology: Gastrointestinal and liver physiology Vol. 288; no. 3; p. G431 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-03-2005
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glucagon-like peptide-2 (GLP-2) is an enteroendocrine peptide that is released in response to luminal nutrients and has unique trophic actions in the gastrointestinal tract. These features suggest GLP-2 may be important in controlling intestinal adaptation. We examined the relationship over time of GLP-2 production and adaptation to intestinal resection, the effects of resection-induced malabsorption on GLP-2 production, and the correlation of endogenous serum GLP-2 levels with adaptation as measured by crypt-cell proliferation (CCP). We initially examined the effect of nutrient malabsorption, induced by a 90% resection of the proximal intestine studied on day 4, on the time course and levels of GLP-2 release. Secondly, the degree of malabsorption was varied by performing intestinal transection or 50, 75, or 90% resection of proximal small intestine. Finally, the relationship of GLP-2 levels over time with adaptation to a 90% resection was examined by determining GLP-2 levels on days 7, 14, and 28, and correlating this with intestinal adaptation, as assessed by morphology and CCP rate. A 90% resection significantly increased basal and postprandial GLP-2 levels, with a net increase in nutrient-stimulated exposure over 90 min; GLP-2 exposure (integrated levels vs. time) increased 12.7-fold in resected animals (P < 0.001). Basal and postprandial GLP-2 levels significantly correlated with the magnitude of intestinal resection (r(2) = 0.71; P < 0.001), CCP (r(2) = 0.48; P < 0.005), and nutrient malabsorption (protein, P < 0.001; fat, P < 0.005). The increase in CCP was maintained to 28 days after small bowel resection and was associated with an ongoing elevation in GLP-2 release. These findings suggest that GLP-2 is important in initiating and maintaining the small intestinal adaptive response to resection. |
---|---|
ISSN: | 0193-1857 |
DOI: | 10.1152/ajpgi.00242.2004 |