Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal
The effect of having a birefringent gain crystal is studied in the context of two laser systems: an intracavity frequency-doubled microchip laser and a compact single-frequency laser utilizing a birefringent filter. A model based on Jones calculus is proposed to predict the polarization and waveleng...
Saved in:
Published in: | IEEE journal of quantum electronics Vol. 36; no. 2; pp. 228 - 235 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-02-2000
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of having a birefringent gain crystal is studied in the context of two laser systems: an intracavity frequency-doubled microchip laser and a compact single-frequency laser utilizing a birefringent filter. A model based on Jones calculus is proposed to predict the polarization and wavelength structure of the longitudinal modes and is found to be consistent with experimental measurements. The optimization of these systems is discussed, and the importance of the birefringences in the cavity and cavity length is indicated. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/3.823469 |