Development of an US, MRI, and CT imaging compatible realistic mouse phantom for thermal ablation and focused ultrasound evaluation
•Mouse skeleton manufactured by FDM printing using ASA material.•Mouse soft tissue mimicked by agar-based silica-doped gel.•Good MR and CT contrast between skeletal and soft tissue components demonstrated.•Thermocouple measurements showed realistic behavior during trans-skull sonication. Tissue mimi...
Saved in:
Published in: | Ultrasonics Vol. 131; p. 106955 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-05-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Mouse skeleton manufactured by FDM printing using ASA material.•Mouse soft tissue mimicked by agar-based silica-doped gel.•Good MR and CT contrast between skeletal and soft tissue components demonstrated.•Thermocouple measurements showed realistic behavior during trans-skull sonication.
Tissue mimicking phantoms (TMPs) play an essential role in modern biomedical research as cost-effective quality assurance and training tools, simultaneously contributing to the reduction of animal use. Herein, we present the development and evaluation of an anatomically accurate mouse phantom intended for image-guided thermal ablation and Focused Ultrasound (FUS) applications. The proposed mouse model consists of skeletal and soft tissue mimics, whose design was based on the Computed tomography (CT) scans data of a live mouse. Advantageously, it is compatible with US, CT, and Magnetic Resonance Imaging (MRI). The compatibility assessment was focused on the radiological behavior of the phantom due to the lack of relevant literature. The X-ray linear attenuation coefficient of candidate materials was estimated to assess the one that matches best the radiological behavior of living tissues. The bone part was manufactured by Fused Deposition Modeling (FDM) printing using Acrylonitrile styrene acrylate (ASA) material. For the soft-tissue mimic, a special mold was 3D printed having a cavity with the unique shape of the mouse body and filled with an agar-based silica-doped gel. The mouse phantom accurately matched the size and reproduced the body surface of the imaged mouse. Tissue-equivalency in terms of X-ray attenuation was demonstrated for the agar-based soft-tissue mimic. The phantom demonstrated excellent MRI visibility of the skeletal and soft-tissue mimics. Good radiological contrast between the skeletal and soft-tissue models was also observed in the CT scans. The model was also able to reproduce realistic behavior during trans-skull sonication as proved by thermocouple measurements. Overall, the proposed phantom is inexpensive, ergonomic, and realistic. It could constitute a powerful tool for image-guided thermal ablation and FUS studies in terms of testing and optimizing the performance of relevant equipment and protocols. It also possess great potential for use in transcranial FUS applications, including the emerging topic of FUS-mediated blood brain barrier (BBB) disruption. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0041-624X 1874-9968 |
DOI: | 10.1016/j.ultras.2023.106955 |