The design of multiepitope vaccines from plasmids of diarrheagenic Escherichia coli against diarrhoea infection: Immunoinformatics approach
Diarrhoea infection is a major global health public problem and is caused by many organisms including diarrheagenic Escherichia coli pathotypes. The common problem with diarrhoea is the drug resistance of pathogenic bacteria, the most promising alternative means of preventing drug resistance is vacc...
Saved in:
Published in: | Infection, genetics and evolution Vol. 91; p. 104803 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-07-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diarrhoea infection is a major global health public problem and is caused by many organisms including diarrheagenic Escherichia coli pathotypes. The common problem with diarrhoea is the drug resistance of pathogenic bacteria, the most promising alternative means of preventing drug resistance is vaccination. However, there has not been any significant success in the prevention of diarrhoea caused by E. coli through vaccination. Epitope-based vaccine is gaining more attention due to its safety and specificity. Sequence variation of protective antigens of the pathogen has posed a new challenge in the development of epitope-based vaccines against the infection, leading to the necessity of multiepitope based design. In this study, immunoinformatics tools were used to design multiepitope vaccine candidates from plasmid genome sequences of multiple pathotypes of E. coli species involved in diarrhoea infections. The ability of the identified epitopes to be used as a cross-protect multiepitope vaccine was achieved by identifying conserved, immunogenic and antigenic peptides that can elicit CD4+ T-cell, CD8+ T-cell and B-cell and bind to MHC I and II HLA alleles. The molecular docking results of T-cell epitopes showed their well binding affinity to receptive protein and with a wider population coverage. The different multiepitope-based vaccines (MEVCs) candidates were constructed and based on the types of epitope linker they contained. The MEVCs exhibited very good binding interactions with the human immune receptor. Among multiepitope vaccines constructed, MEVC6, MEVCA and MEVCB are more promising as potential vaccine candidates for cross-protection against gastrointestinal infections according to the computational study. It is also hoped that after validation and testing, the predicted multiepitope-based vaccine candidates will probably resolve the challenge of immunological heterogeneity facing enteric vaccine development.
•This research intends to design multiepitope vaccine candidates from Escherichia coli plasmid.•Three multiepitope-based vaccine candidates against diarrhoea were predicted from the genomes of diarrheagenic E. coli.•The multiepitopes vaccines predicted covered five pathotypes of E. coli.•The epitope linkers have effect on the properties of the constructed multiepitopes and should therefore be considered. |
---|---|
ISSN: | 1567-1348 1567-7257 |
DOI: | 10.1016/j.meegid.2021.104803 |